371 research outputs found

    Metal oxide nanoparticle based electrochemical sensor for total antioxidant capacity (TAC) detection in wine samples

    Get PDF
    A single-use electrochemical screen-printed electrode is reported based on biomimetic properties of nanoceria particles (CeNPs). The developed tool showed an easy approach compared to the classical spectrophotometric methods reported in literature in terms of ease of use, cost, portability, and unnecessary secondary reagents. The sensor allowed the detection of the total antioxidant capacity (TAC) in wine samples. The sensor has been optimized and characterized electrochemically and then tested with antioxidant compounds occurred in wine samples. The electrochemical CeNPs modified sensor has been used for detection of TAC in white and red commercial wines and the data compared to the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS)-based spectrophotometric method. Finally, the obtained results have demonstrated that the proposed sensor was suitable for the simple and quick evaluation of TAC in beverage samples

    Catalase-based modified graphite electrode for hydrogen peroxide detection in different beverages

    Get PDF
    A catalase-based (NAF/MWCNTs) nanocomposite film modified glassy carbon electrode for hydrogen peroxide (H2O2) detection was developed. The developed biosensor was characterized in terms of its bioelectrochemical properties. Cyclic voltammetry (CV) technique was employed to study the redox features of the enzyme in the absence and in the presence of nanomaterials dispersed in Nafion polymeric solution. The electron transfer coefficient, , and the electron transfer rate constant, , were found to be 0.42 and 1.71 s−1, at pH 7.0, respectively. Subsequently, the same modification steps were applied to mesoporous graphite screenprinted electrodes. Also, these electrodes were characterized in terms of their main electrochemical and kinetic parameters. The biosensor performances improved considerably after modification with nanomaterials. Moreover, the association of Nafion with carbon nanotubes retained the biological activity of the redox protein. The enzyme electrode response was linear in the range 2.5– 1150 mol L−1, with LOD of 0.83 mol L−1. From the experimental data, we can assess the possibility of using the modified biosensor as a useful tool for H2O2 determination in packaged beverages

    Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection

    Get PDF
    In this work, several theoretical aspects involved in the first-generation inhibition-based electrochemical biosensor measurements have been discussed. In particular, we have developed a theoretical-methodological approach for the characterization of the kinetic interaction between alkaline phosphatase (AlP) and 2,4- dichlorophenoxy acetic acid (2,4-D) as representative inhibitor studied by means of cyclic voltammetry and amperometry. Based on these findings, a biosensor for the fast, simple, and inexpensive determination of 2,4-D has been developed. The enzyme has been immobilized on screen-printed electrodes (SPEs). To optimize the biosensor performances, several carbon-based SPEs, namely graphite (G), graphene (GP), and multiwalled carbon nanotubes (MWCNTs), have been evaluated. AlP was immobilized on the electrode surface by means of polyvinyl alcohol with styryl-pyridinium groups (PVA-SbQ) as cross-linking agent. In the presence of ascorbate 2-phosphate (A2P) as substrate, the herbicide has been determined, thanks to its inhibition activity towards the enzyme catalyzing the oxidation of A2P to ascorbic acid (AA). Under optimum experimental conditions, the best performance in terms of catalytic efficiency has been demonstrated by MWCNTs SPE-based biosensor. The inhibition biosensor shows a linearity range towards 2,4-D within 2.1–110 ppb, a LOD of 1 ppb, and acceptable repeatability and stability. This analysis method was applied to fortified lake water samples with recoveries above 90 %. The low cost of this device and its good analytical performances suggest its application for the screening and monitoring of 2,4-D in real matrices

    Comparison between a direct-flow SPR immunosensor for ampicillin and a competitive conventional amperometric device: analytical features and possible applications to real samples

    Get PDF
    In this research, we developed a direct-flow surface plasmon resonance (SPR) immunosensor for ampicillin to perform direct, simple, and fast measurements of this important antibiotic. In order to better evaluate the performance, it was compared with a conventional amperometric immunosensor, working with a competitive format with the aim of finding out experimental real advantages and disadvantages of two respective methods. Results showed that certain analytical features of the new SPR immunodevice, such as the lower limit of detection (LOD) value and the width of the linear range, are poorer than those of a conventional amperometric immunosensor, which adversely affects the application to samples such as natural waters. On the other hand, the SPR immunosensor was more selective to ampicillin, and measurements were more easily and quickly attained compared to those performed with the conventional competitive immunosensor

    Nanoparticles modified screen printed electrode for electrochemical determination of COD

    Get PDF
    The Chemical Oxygen Demand (COD) is a parameter widely used to determine organic pollutants in water and is defined as the number of oxygen equivalents necessary to oxidize the organic compounds. The standard method for COD measurement (the dichromate titration) suffers from several inherent drawbacks such as the long time of the process and the consumption of toxic chemicals. Hence, interest is growing towards those methods employing electrochemical oxidation of organic compounds, as they allow to dispense with toxic reagents and above all to perform a continuous determination. In this work a new electrochemical method for COD measurement has been developed based on direct oxidation of organic molecules on suitably modified electrodic surfaces. In particular, we have developed various sensors based on modified working electrode surfaces obtained by electrodepositing copper and/or nickel oxide nanoparticles onto several commercial screen printed electrodes. Glucose was used as the standard compound for COD measurements: C6H12O6 + 6O2 → 6CO2 + 6H2O The metallic nanoparticles catalyze the oxidation of the glucose, as well as of different organic pollutants, and make the detection possible at relatively low potential, also in presence of chloride as interferent. The analytical parameters were optimized and the results obtained highlight how the electrodeposition of different metallic nanoparticles onto several screen printed electrode surfaces can influence the selectivity and sensitivity towards the COD detection in real matrices, via electrochemical method. The results were compared with those obtained by the standard method and showed a good agreement. These findings provide an interesting strategy to obtain a simple, cheap, portable and eventually continuous sensor for COD measurement

    Rapid screening of beta-adrenergic agents and related compounds in human urine for anti-doping purpose using capillary electrophoresis with dynamic coating

    Get PDF
    This paper presents a capillary electrophoresis method, developed for the detection, in human urine, of beta-adrenergic agents and phenolalkylamines. The electrophoretic separation is achieved in less than 10 min and is based on the use of CEofix kit, for the dynamic capillary coating. The effects of accelerator buffer pH and separation voltage were investigated. The optimum buffer pH was found to be 2.5 for beta2-agonists and 6.2 for beta-blockers and phenoalkylamines with a separation voltage of 15 IN. Urine samples spiked with the compounds here studied were treated according to the standard procedure (SPE and evaporation to dryness) and analyzed by CE interfaced with an UV diode-array, set at 195 and 210 nm. The quantitative validation results, obtained analyzing samples at three different concentrations, show a good precision of peak areas that do not exceed 5% for intra-day assays and 10% for inter-day assays. Good linearity (r(2) > 0.995) was obtained within the 50-500 ng/mL concentration range. The qualitative validation data show a relative migration times (MTs) variation lower than 1%. The analytes were clearly distinguishable in urine, with LOD and LOQ in the range of 10-80 and 40-100 ng/mL, respectively

    Nanostructure-Based Electrochemical Immunosensors as Diagnostic Tools

    Get PDF
    Electrochemical immunosensors are affinity-based biosensors characterized by several useful features such as specificity, miniaturizability, low cost and simplicity, making them very interesting for many applications in several scientific fields. One of the significant issues in the design of electrochemical immunosensors is to increase the system’s sensitivity. Different strategies have been developed, one of the most common is the use of nanostructured materials as electrode materials, nanocarriers, electroactive or electrocatalytic nanotracers because of their abilities in signal amplification and biocompatibility. In this review, we will consider some of the most used nanostruc- tures employed in the development of electrochemical immunosensors (e.g., metallic nanoparticles, graphene, carbon nanotubes) and many other still uncommon nanomaterials. Furthermore, their diagnostic applications in the last decade will be discussed, referring to two relevant issues of present-day: the detection of tumor markers and viruses

    A flow SPR immunosensor based on a sandwich direct method

    Get PDF
    In this study, we report the development of an SPR (Surface Plasmon Resonance) immunosensor for the detection of ampicillin, operating under flow conditions. SPR sensors based on both direct (with the immobilization of the antibody) and competitive (with the immobilization of the antigen) methods did not allow the detection of ampicillin. Therefore, a sandwich-based sensor was developed which showed a good linear response towards ampicillin between 10-3 and 10-1 M, a measurement time of ≤20 min and a high selectivity both towardsβ-lactam antibiotics and antibiotics of different classes. © 2016 by the author
    • …
    corecore